基于混合规避策略的期权定价及其数值分析
    点此下载全文
引用本文:潘 雪 勤.基于混合规避策略的期权定价及其数值分析[J].经济数学,2018,(3):91-97
摘要点击次数: 726
全文下载次数: 0
作者单位
潘 雪 勤 (华南理工大学 数学学院广东 广州 510640) 
中文摘要:考虑现实市场中红利的存在、波动率等参数随时间变化以及交易时间不连续产生的对冲风险不可忽略,研究离散时间、支付红利条件下基于混合规避策略的期权定价模型.由平均自融资-极小方差规避策略得到相应欧式看涨期权定价方程,并且分别使用偏微分方法和概率论方法得到统一的闭形解.数值分析表明,与经典的期权定价模型相比,新模型中的期权价格更接近对冲成本.
中文关键词:概率论  期权定价  规避策略  Feynman-Kac公式  蒙特卡洛模拟法
 
Option Pricing and Its Numerical Analysis Based on Mixed Hedging Strategy
Abstract:Essentially, considering the existence of dividend, the change of volatility with different time, and the fact the risk of hedging caused by a discrete time case can’t be neglected in the real world, this paper studies the option pricing model based on the mixed hedging strategy in a discrete time incomplete market and dividend payout. The corresponding European call option pricing equation is obtained from an average self-finance minimal variance hedging strategy, and then the partial closed-form solution is obtained from the partial differential method and the probability theory method in detail. From numerical analysis, we found that the option price in the new model is closer to the hedging cost than the B-S model. It illustrates that residual risks, risk preference, the trading frequency and dividend as well as the mixed hedging strategy play an important role in option pricing and portfolio hedging in a discrete time case.
keywords:probability theory  option pricing  Feynman-Kac formula  Monte Carlo simulation
查看全文   查看/发表评论   下载pdf阅读器