敲定时间为随机变量的情况下奇异期权定价问题研究
    点此下载全文
引用本文:贾兆丽,杨舒荃,华铎.敲定时间为随机变量的情况下奇异期权定价问题研究[J].经济数学,2017,(2):79-83
摘要点击次数: 738
全文下载次数: 0
作者单位
贾兆丽,杨舒荃,华铎 (合肥工业大学 数学学院安徽 合肥230009) 
中文摘要:受保险精算中定价最小死亡保证金的启发,当死亡发生时,会收到一定数额的财富作为补偿,而这笔财富当作是一种支付,它不仅依赖于原生资产的当前价格,还依赖于之前的价格信息.可以把这个支付函数看做是一种特殊期权的收益函数.又由于随机变量Tx(表示年龄为x的顾客从购买合约到死亡的时间段)的分布可以被近似地看做是几个指数分布的线性组合.假设股票价格变化服从双指数跳扩散过程.利用Lévy过程的指数停时的有关结果,给出敲定时间为随机变量的情况下累计期权的价格公式的显式解.这些定价方法可以用于与死亡相关的未定权益的定价,如各种养老金保险等.
中文关键词:金融数学  奇异期权定价  数学分析  跳扩散过程  显式解
 
Valuing Exotic Options under the Strike-Time of the Random Variable
Abstract:At the time of death,a benefit payment is due,and the benefit payment is regarded as a payment function,which depends not only on the price of a stock at that time,but also on prior prices.The payment turns out to be the payoff of an option,because the distribution of the time of death Tx(that is the time-until-death random variable for a life age x from buying the contracts) can be approximated by a linear combination of exponential distributions.For simplicity,the analysis is made for the case where the time until death is exponentially distributed,which is independent with the stock price process.In this paper,stock price was assumed to follow a double exponential jump diffusion process.The results for exponential stopping of a Lévy process were used to derive a closed-form formula for a Knock Out Discount Accumulator,under the strike time is the random variable.The pricing method of this paper can be used for value equity-linked death benefits such as various annuities and so on.
keywords:Financial mathematics  price of exotic options  process of jump diffusion model  Mathematical analysis  closed-form solution
查看全文   查看/发表评论   下载pdf阅读器