广东省能源需求预测模型构建及实证分析
    点此下载全文
引用本文:叶艺勇.广东省能源需求预测模型构建及实证分析[J].经济数学,2015,(3):64-72
摘要点击次数: 719
全文下载次数: 71
作者单位
叶艺勇 (五邑大学 经济管理学院 广东 江门529020) 
中文摘要:为了对广东省的能源需求进行准确的预测,首先分析了影响广东省能源需求的各种因素,构建了预测指标体系.在此基础上,针对能源系统非线性等复杂系统特征,结合粒子群算法和BP神经网络的优点,构建了改进的PSO-BP神经网络的预测模型,并通过主成分分析法对指标体系进行数据降维,以降低神经网络的规模和复杂程度.以广东省1985-2013年的能源需求数据进行模拟与仿真,并对2014-2018年的能源需求量进行预测,理论分析和实证研究表明,该方法能够很好的反映广东省能源需求的特征,预测结果较为准确合理.
中文关键词:能源需求预测,粒子群算法,BP神经网络,主成分分析法
 
Construction of Energy Demand Forecasting Model and Empirical Analysis of Guangdong Province
Abstract:In order to make accurate forecast for energy demand of Guangdong province, this paper analyzed the various factors which impact on energy demand of Guangdong province, and constructed the predict index system. On this basis, according to the nonlinear characteristics of the energy system, combined with the advantages of particle swarm optimization algorithm and BP neural network, a prediction model was constructed based on PSO-BP neural network. And the method of principal component analysis was used to reduce the dimensions of the prediction index system in order to reduce the size and complexity of the neural network. Then, this paper simulated the energy demand data of Guangdong province from 1985 to 2013, and carried on the forecast energy demand of Guangdong province during 2014 to 2018. The theoretical analysis and empirical study show that this method can reflect the characteristics of energy demand of Guangdong province, and the predicted result is more accurate and reasonable.
keywords:forecasting of energy demand, PSO, BP neural network, PCA
查看全文   查看/发表评论   下载pdf阅读器