基于Pair-Copula-GARCH模型与CVaR的时变投资组合优化 |
点此下载全文 |
引用本文:徐晓波,李述山,叶 杨.基于Pair-Copula-GARCH模型与CVaR的时变投资组合优化[J].经济数学,2015,(1):42-46 |
摘要点击次数: 1692 |
全文下载次数: 59 |
|
|
中文摘要:以过去的信息为条件,以一致性风险度量CVaR为优化目标,以组合收益率为约束条件,建立了时变投资组合优化模型,通过基于pair-copula-GARCH模型的蒙特卡洛模拟方法得到未来某时刻收益率的多个可能情景,并引入一个特殊函数实现了投资组合模型的线性化,得到了最优投资组合策略.最后针对提出的模型进行了实例分析. |
中文关键词:pair-copula GARCH模型 时变CVaR 投资组合优化 |
|
Time-varying Portfolio Optimizing Based on Pair-Copula-GARCH Model and CVaR |
|
|
Abstract:On the basis of the historical information, aiming at minimum the coherent risk measure CVaR and regarding portfolio returns as constraint conditions, the time-varying portfolio optimization model was established. The linearization of portfolio investments model was achieved by introducing a special function and some possible scenarios representing future moment returns, which can be calculated by the Monte Carlo simulation method based on the pair-copula-GARCH model. The model helps us get optimal portfolio investments strategy.Finally, the presented model was exemplified by a case. |
keywords:pair-copula GARCH model time-varying CVaR portfolio optimizing |
查看全文 查看/发表评论 下载pdf阅读器 |